Searchable abstracts of presentations at key conferences in endocrinology

ea0013p203 | Endocrine tumours and neoplasia | SFEBES2007

Multiple endocrine neoplasia Type 1 (MEN1) caused by a novel mutation in intron 9 in a family with the McCune-Albright syndrome

Harding Brian , Lemos Manuel , Shalet Stephen , Thakker Rajesh

Objective: To investigate a family with the unusual combination of Multiple Endocrine Neoplasia (MEN1) and the McCune-Albright syndrome for mutations of the MEN1 and GNAS1 genes. MEN1 is an autosomal dominant disorder characterised by parathyroid, pancreatic and pituitary tumours whereas the McCune-Albright syndrome is a sporadic disorder characterised by polyostotic fibrous dysplasia, skin pigmentation and hyperfunctioning endocrine tumours.<p class="abstext...

ea0077oc5.4 | Bone and Calcium | SFEBES2021

Nuclear factor I/X (NFIX) regulates the transcriptional activity of the cellular retinoic acid binding protein 2 (CRABP2) promoter and alters CRABP2 expression in Marshall-Smith Syndrome (MSS) patients.

Kooblall Kreepa , Stevenson Mark , Lines Kate , Stewart Michelle , Wells Sara , Teboul Lydia , Hennekam Raoul , Thakker Rajesh

Marshall-Smith syndrome (MSS) is a congenital disorder affecting skeletal and neural development, due to mutations in the nuclear factor I/X (NFIX) gene. NFIX encodes a ubiquitously expressed transcription factor that regulates the expression of viral and cellular genes. To identify novel genes that are misregulated by NFIX mutations, RNA sequencing and proteomics analyses were performed on mouse embryonic fibroblast (MEF) cells derived from a repres...

ea0055p27 | Poster Presentations | SFEEU2018

A case of Idiopathic Infantile Hypercalcaemia (IIH) persisting into adulthood, caused by compound heterozygous mutations of 1,25-dihydroxyvitamin D2 24-hydroxylase (CYP24A1)

Stokes Victoria , Gorvin Caroline M , Jafar-Mohammadi Bahram , Ryan Fiona , Thakker Rajesh V

Case history: Idiopathic Infantile Hypercalcaemia (IIH) classically presents in the first year of life, usually resolves by 1 year of age and is due to mutations in 1,25-dihydroxyvitamin D2 24-hydroxylase (CYP24A1) or, rarely, sodium-phosphate cotransporter-2A (SLC34A1). We report a case of IIH in a Caucasian female, who was born to non-consanguineous parents, with hypercalcaemia, hypercalciuria and associated complications persisting into adulthoo...

ea0050oc6.6 | Bone, Calcium and Neoplasia | SFEBES2017

Calcium-sensing receptor (CaSR) mutations in hypercalcaemic and hypocalcaemic patients cluster at the extracellular dimer interface

Olesen Mie K , Gorvin Caroline M , Thakker Rajesh V , Hannan Fadil M

Loss- and gain-of-function mutations of the calcium-sensing receptor (CaSR) cause familial hypocalciuric hypercalcaemia (FHH) and autosomal dominant hypocalcaemia (ADH), respectively. The CaSR is a homodimeric receptor that has a 612 amino acid extracellular domain (ECD), which binds extracellular calcium (Ca2+e) and mediates dimer interactions upon ligand binding. The ECD consists of lobes 1 and 2, and a cysteine-rich domain (CRD). To elucidate the struc...

ea0050p044 | Bone and Calcium | SFEBES2017

Disruption of the G-protein subunit α11 (Gα11) interdomain interface causes autosomal dominant hypocalcemia type-2 (ADH2)

Gorvin Caroline , Cranston Treena , Homfray Tessa , Shine Brian , Hannan Fadil , Thakker Rajesh

Heterotrimeric G-proteins are important molecular switches that transduce extracellular ligand-binding at G-protein-coupled receptors (GPCRs) to intracellular signals. G-protein alpha-subunits (Gα) have two domains, a helical and GTPase domain, which provide structural stability and mediate GTPase activity, respectively. Gain-of-function Gα mutations cause endocrine conditions including McCune-Albright Syndrome, due to Gαs mutations, and a...

ea0050p045 | Bone and Calcium | SFEBES2017

Uniparental isodisomy as a cause of the autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) syndrome

Cranston Treena , Boon Hannah , Ryan Fiona , Shears Debbie , Thakker Rajesh , Hannan Fadil

The autoimmune polyendocrinopathy candidiasis ectodermal dystrophy (APECED) syndrome is an autosomal recessive disorder characterized by immune deficiency and the autoimmune destruction of endocrine organs such as the parathyroids, adrenal cortex and ovaries. APECED is caused by biallelic germline mutations of the autoimmune regulator (AIRE) gene on chromosome 21q22.3, which is expressed in thymic medullary epithelial cells and plays a key role ...

ea0050p182 | Clinical Biochemistry | SFEBES2017

Clinical evaluation of a multiple-gene sequencing panel for hypoparathyroidism

Stokes Victoria , Cranston Treena , Boon Hannah , Gorvin Caroline , Hannan Fadil , Thakker Rajesh

Hypoparathyroidism may occur as: a hereditary syndromic disorder (e.g. Autoimmune Polyendocrinopathy Candidiasis Ectodermal Dystrophy (APECED), Hypoparathyroidism Sensorineural Deafness and Renal Disease (HDR), Autosomal Dominant Hypoparathyroidism type 1 (ADH1), or ADH type 2 (ADH2), which are due to mutations of autoimmune regulator (AIRE), GATA binding protein 3 (GATA3), calcium-sensing receptor (CASR) and G-protein sub...

ea0050p242 | Neoplasia, Cancer and Late Effects | SFEBES2017

Combination of JQ1, an inhibitor of epigenetic pathways, and everolimus for treatment of pancreatic and bronchial neuroendocrine tumours

Lines Kate E , Stevenson Mark , Filippakopoulos Panagis , Grozinsky-Glasberg Simona , Bountra Chas , Thakker Rajesh V

Current treatments, including surgery, medical therapy, radiotherapy, and radionuclide therapy for neuroendocrine tumours of the pancreas (PNETs) and bronchus (BNETs) are often unsatisfactory, leading to a 5-year survival of <50% and 5%, respectively. PNETs and BNETs frequently have mutations in chromatin-remodelling genes and the protein encoded by the multiple endocrine neoplasia type 1 (MEN1) gene, menin. Menin binds the...

ea0050oc6.6 | Bone, Calcium and Neoplasia | SFEBES2017

Calcium-sensing receptor (CaSR) mutations in hypercalcaemic and hypocalcaemic patients cluster at the extracellular dimer interface

Olesen Mie K , Gorvin Caroline M , Thakker Rajesh V , Hannan Fadil M

Loss- and gain-of-function mutations of the calcium-sensing receptor (CaSR) cause familial hypocalciuric hypercalcaemia (FHH) and autosomal dominant hypocalcaemia (ADH), respectively. The CaSR is a homodimeric receptor that has a 612 amino acid extracellular domain (ECD), which binds extracellular calcium (Ca2+e) and mediates dimer interactions upon ligand binding. The ECD consists of lobes 1 and 2, and a cysteine-rich domain (CRD). To elucidate the struc...

ea0050p044 | Bone and Calcium | SFEBES2017

Disruption of the G-protein subunit α11 (Gα11) interdomain interface causes autosomal dominant hypocalcemia type-2 (ADH2)

Gorvin Caroline , Cranston Treena , Homfray Tessa , Shine Brian , Hannan Fadil , Thakker Rajesh

Heterotrimeric G-proteins are important molecular switches that transduce extracellular ligand-binding at G-protein-coupled receptors (GPCRs) to intracellular signals. G-protein alpha-subunits (Gα) have two domains, a helical and GTPase domain, which provide structural stability and mediate GTPase activity, respectively. Gain-of-function Gα mutations cause endocrine conditions including McCune-Albright Syndrome, due to Gαs mutations, and a...